
Software Requirements Specification (SRS)
X-Browser Editor
·
Team:	2
Authors: 	Tarpan Patel, Joshua Michaud, Ben Viscosi, Marcello Barbieri,
	Bill Figliolini
Customer: 	Front-End Developers
Instructor: 	Dr. James Daly

1 Introduction
X-Browser Editor is a web development tool created to streamline web development testing. This initial section will describe this document’s purpose, the scope of the document, define the definitions to be used throughout the rest of the document, and provide a description of the following sections.

1.1 Purpose
	This document is the definitive set of requirements for the X-Browser Editor and will help clarify these requirements between the developers, the customer, and the instructor. The intended audience is the development team of the Editor, as well as any users of the Editor who want to understand why the current design was chosen.

1.2 Scope
	X-Browser Editor will attempt to streamline the process of website development. Currently with the differing implementations of HTML, CSS, and JavaScript implementations between browsers, testing if one’s current website implementation functions and is consistent across platforms can be time consuming. By directly connecting the browsers to the editor, X-Browser Editor seeks to simplify this process and provide real-time feedback to the developer.
1.3 Definitions, acronyms, and abbreviations
	Editor: The X-Browser Editor
	User: The website developer using the Editor
JS: JavaScript
	Website: the interpreted result of HTML, CSS, and JavaScript code
	Browser: The Web browser which the Website will be run on to test its compatibility
 Files: Any set of HTML, CS, or JS files.
1.4 Organization
The remainder of the SRS is organized into the following 6 sections:
	Section 2 : This section is an overview of the Editor as well as an overview of the Editor’s functions, user expectations, constraints, and dependencies.
	Section 3: A formal list of the software’s requirements
	Section 4: Provides the expected use cases of the Editor, its classes and how they relate, and finally the Editor’s sequence diagrams.
	Section 5: This will provide an instruction manual for the Editor’s prototype, as well as a link to the prototype.
	Section 6: A list of all referenced works for the document.
	Section 7: Contact information for the instructor for questions regarding the Editor.

2 Overall Description
This section is intended to cover all the assumptions surrounding the User and the underlying the design of the Editor. It will cover the perspective the developers have taken for the development of the Editor, it’s intended functions, and the expected abilities of the User. It then moves on to the Editor itself, describing the constraints to the Editor, the assumptions and dependencies made during development, and finally the features which have been determined to be outside the Editor’s scope.
2.1 Product Perspective
The Editor is to serve as an independent development environment for HTML, CSS, and JS. By integrating browsers directly into the development environment, it aims to streamline testing and allow the user to see the effects of their changes and if they are consistent across the range of browsers which the User has selected for testing. This will allow for the User to correct any code which results in inconsistencies rapidly, avoiding having to send the website to a third party to verify if it correctly functions on multiple browsers. To maintain easy usability of the code, we have opted to design this editor as a web app, allowing it to be portable across multiple devices.
2.2 Product Functions
The Editor will help streamline website development by allowing the user to see the effects of their changes to their website on multiple browsers in real-time. This will reduce overhead in development, and reduce time being wasted manually verifying if a new HTML, CSS, or JS feature has been adopted across all bowsers.

2.3 User Characteristics
The user is expected to be a web developer with experience in HTML, CSS, or JS. They will be expected to have some knowledge of how to navigate a common IDE, as well as a browser.
2.4 Constraints
The User will be accessing the Editor through a browser, so usage of new and possibly unsupported HTML, CSS, or JS features need to be avoided to maintain general usability.

2.5 Assumptions and Dependencies
The Editor will be based on a Web App, requiring an active internet connection and a working browser.
The Editor will require permissions to save the created Files to the User’s machine.
The Editor will require the user to upload any already existing Files for the Editor to display.
The user is expected to understand at least one of HTML, CSS, or JS for the purposes of using the Editor.

2.6 Apportioning of Requirements

The initial release of the Editor will be limited to displaying the resulting code, leaving the actual validation to the User. In a future update, the Editor may attempt to include automated testing of this, further streamlining development.

3 Specific Requirements
1. Webapp Layout
1.1. The Editor will have real-time rendering of HTML file and associated CSS and JS files
1.2. The Editor will be able to connect and render multiple browsers simultaneously
1.3. The Editor will have a means of displaying each browser
2. Code Editor
2.1. The Editor will accept user inputted HTML, CSS, and JS Code to make the Website
2.2. The Editor will prepare the code for rendering by the Browsers
2.3. The Editor will allow the user to save any Files created in the Editor to their computer.
2.4. The Editor will allow the User to open any Files that already exist.
3. Virtualized Browsers
3.1. The Editor will accept a list of Browsers to test
3.2. The Editor will display the user’s Website on all the Browsers which have been selected

4 Modeling Requirements

[bookmark: _Hlk56609303]4.1 Use Case Diagram

The XBrowser use case diagram is single user application which focuses on meeting user’s expectations as they interact on the website. The use case diagram starts by having the user uploading files and adding browsers to test their work. As the user saves their work, many features are executed to render the layout on the selected browsers corresponding to the contents on the files. Please see below for use case diagram and definitions below:

[image: Diagram

Description automatically generated]

	Use Case Name:
	Upload Code

	Actors:
	User

	Description:
	The user uploads files that they want to edit.

	Type:
	Primary

	Includes:
	None

	Extends:
	None

	Cross-refs:
	Requirement 2.1

	Uses cases:
	None

	Use Case Name:
	Open Virtual Browsers

	Actors:
	User

	Description:
	The user can choose what browsers to view their results

	Type:
	 Primary

	Includes:
	Web App Layout

	Extends:
	 None

	Cross-refs:
	Requirement 3.1, 3.2

	Uses cases:
	 Load default virtual browsers (Firefox, Chrome, Safari)

	Use Case Name:
	Edit Code

	Actors:
	User

	Description:
	The user edits their code.

	Type:
	Primary

	Includes:
	None

	Extends:
	None

	Cross-refs:
	 Requirement 2.1, 2.2

	Uses cases:
	 The code files must be html, CSS, or JS.

	Use Case Name:
	Save Code

	Actors:
	User

	Description:
	Code is saved.

	Type:
	Primary

	Includes:
	Update Virtual Browsers, Styling, PostCSS, Linting

	Extends:
	None

	Cross-refs:
	Requirement 2.1

	Uses cases:
	Code must have changed since last save.

	Use Case Name:
	Update Virtual Browsers

	Actors:
	User

	Description:
	Code output is displayed in virtual browsers

	Type:
	 Secondary

	Includes:
	Web App Layout

	Extends:
	 None

	Cross-refs:
	Requirement 1.3, 3.2

	Uses cases:
	The browsers must be displayed before updating.

	Use Case Name:
	PostCSS

	Actors:
	 Program

	Description:
	Run code through PostCSS.

	Type:
	Secondary

	Includes:
	None

	Extends:
	None

	Cross-refs:
	

	Uses cases:
	The user must Save Code.

	Use Case Name:
	Linting

	Actors:
	 Program

	Description:
	The user’s code is linted.

	Type:
	Secondary

	Includes:
	None

	Extends:
	None

	Cross-refs:
	

	Uses cases:
	The user must Save Code.

	[bookmark: _Hlk56609871]Use Case Name:
	Linting

	Actors:
	 Program

	Description:
	The user’s code is linted.

	Type:
	Secondary

	Includes:
	None

	Extends:
	None

	Cross-refs:
	

	Uses cases:
	The user must Save Code.

	Use Case Name:
	Styling

	Actors:
	 Program

	Description:
	The user’s code is styled.

	Type:
	Secondary

	Includes:
	None

	Extends:
	None

	Cross-refs:
	

	Uses cases:
	The user must Save Code.

4.2 Class Diagram
The class diagram below displays the necessary classes and its operations that XBrowser website is built from. Please see the diagram and its data dictionary below.

[image:]

	Element Name
	Description

	Web App
	The Web App class provides basic operations to set up an XBrowser working environment.

	Attributes
	
	

	
	Styles : CSS
	CSS file required for the styling the website

	
	Template : html
	Html file required for the layout of the website

	Operations
	
	

	
	uploadFiles() : boolean
	Member of class Web App executes when the user selects the option to upload existing files.

	
	addBrowser(BrowserType:String, Version: String)
	This function interacts with Browser Manager class, allowing the user to add a browser given type (i.e. Chrome) and its version.

	
	removeBrowser(BrowserType:String, Version: String)
	Member of class Web App, interacts with Browser Manager class, allowing to remove browser from the view by specifying its type and version.

	
	save()
	The function allows users to save their edited files.

	Relationships
	The Web App class has associated Editor and Browser Manager classes and which creates the instances of the two classes.

	Element Name
	Description

	Editor
	The Editor class assists Users on editing files and keeping files error free.

	Attributes
	
	

	
	files : Files[*]
	An array provided for uploadFiles method to store information for files.

	
	currFile : String
	A string that contains the name of the file that is being edited.

	
	addedLines : String[*]
	An array of strings containing the new lines of code added to a file(s).

	
	removeLines : String[*]
	An array of strings to store lines of code that are removed.

	
	editedLines : String[*]
	An array of strings to store lines of code before they are edited.

	Operations
	
	

	
	format(): void
	Format function structures the lines of code for readability, understanding and debugging.

	
	lint(): String
	Lint function helps Users debug files containing errors.

	
	transpile(): File
	Generates equivalent source to source code in other languages

	
	save(): boolean
	The function allows users to save their files.

	
	updateBrowser(): boolean
	Function interacts with Browser Manager class to have the contents updated in the browsers.

	Relationships
	The editor class has an association relationship with Web App class.

	Element Name
	Description

	Browser Manager
	The Browser Manager class fulfils the requests of Users on browser preferences.

	Attributes
	
	

	
	 AvailableBrowsers : String[*]
	An array containing available Browsers for Users to test their code

	
	currBrowsers : Browsers[*]
	An array that holds browsers the user is currently working with to test their code.

	Operations
	
	

	
	reload() : boolean
	The operation that refreshes the layout on the browser(s) corresponding to edited files.

	
	addBrowser(BrowserType:String, Version: String) : Browser
	Interacting with Browser class, this method adds a browser given type (i.e. Chrome) and its version

	
	removeBrowser(BrowserType:String, Version: String): boolean
	Interacting with Browser class, the method removes selected browser from currBrowsers array given its version and type (i.e. Chrome).

	Relationships
	The Browser has an association relationship with Web App class and has composition relationship with Browser class. The Browser Manager updates the browser per Users interaction in Editor class. The Browser manager can have 1 to many browser objects.

	Element Name
	Description

	Browser
	The Browser class

	Attributes
	
	

	
	browser : String
	A string that contains the name of the browser.

	
	version : String
	A string that holds the version of the browser.

	
	Loaded : Boolean
	A Boolean value to confirm if the new content is updated on browsers.

	Operations
	
	

	
	reload() : Boolean
	Method updates the layout on the virtual browsers upon save.

	Relationships
	The Browser class has a composition relationship of the Browser Manager class.

4.3 State Diagram

The state diagram demonstrates each stage for Users on how to navigate through XBrowser to set their working environment.

[image:]

4.4 Sequence Diagram
 	The sequence diagram below shows the operations that occur when the user interacts with XBrowser.

[image: Diagram

Description automatically generated]

5 Prototype

The present Prototype V1 provides a sample of how the web app could be laid out. This will be used to generate feedback as well as help find any glaring flaws in the layout.

5.1 How to Run Prototype

The prototype requires a GitHub account and Yarn installed.
Prototype is accessible online at https://dazzling-tesla-17ff26.netlify.app/

To run your own instance:
1. Install node.js version 10.0 or greater
2. Install Yarn tool
3. Clone XBrowser repository from: https://github.com/marcebdev/XBrowser
4. Open a terminal in the repo directory
5. yarn install
6. yarn generate
7. yarn start, this will be you to the webpage
8. Go to : http://localhost:3000/

Helpful Link installing Yarn: https://classic.yarnpkg.com/en/docs/install/#debian-stable

5.2 Sample Scenarios

XBrowser is not a complicated application to use. The user starts off the main page, where they upload files. Once the files are uploaded, the user can select what browsers to test their websites on by providing version and browser type (i.e. Firefox, Chrome etc.). The user can now start editing their code. To view the updated layout on the virtual browsers, the user will have to save the edited files and content in virtual browsers will be refreshed. The user has the option to download files when they are done editing and then exit or start editing other files.

[image:]
6 References
· Provide list of all documents referenced in the SRS
· Identify each document by title, report number, date, and publishing organization.
· Specify the sources from which the references can be obtained.
· Include an entry for your project website.

Start of your text.
7 Point of Contact
For further information regarding this document and project, please contact Prof. Daly at University of Massachusetts Lowell (james_daly at uml.edu). All materials in this document have been sanitized for proprietary data. The students and the instructor gratefully acknowledge the participation of our industrial collaborators.
	Template based on IEEE Std 830-1998 for SRS. Modifications (content and ordering of information)
	Revised: 10/24/2019 4:57 PM

image3.png
Start

Main Page

Select N

Expol

Select
Add B

Upload Files

Display Files—| gt Files

Update Browser__|

save

e save Fie.

Reload-

i Files

v

Display Browser

>

Show Layout

Download Files [«

Exit

—

Eng

L

image4.png
User Web App Editor [Browser Manager Browser

T_UploadFies()
FilesUploaded(Boolean

.AddEmwnl(VlmLm)

AddBrowser(Version)

Ry H oA

[F——— |

h iy RomovaBrawser(Varsion) |

EditFiles() > BrowserRemoved(Boolean) i
FioEatodd |

save)

Reload()

H{ Loaded(Boolean

[ExporFie(Name) Savens(Name)

DownloadFie()

image5.jpeg
Xbrowner x 4+

B Upload

image1.png
User

X-Browser)
pioad
Code
Gpen Virtual, _
Browsers

<incluge>

<<|n(juflf>> h

image2.png
Web App

« styles: css

+ template: himi

+ save() boolean
+ addBrowser(BrowserType:String, Version:String)

+ removeBrowser(BrowserType:String, Version'String)

+ uploadFies(): boolean

Editor Browser Manager
+ fles: Fies'] + AvallableBrowsers: Stingl’]
- curFile: String + cunBrowsers: Browsers[’]

- addedLines: Stringl']

—=>| + reload(): Boolean
- removedLines: Stringl'] + addBrowser(BrowserType:String, Version:String): Browser
- editedLines: Stringl'] » + removeBrowser(BrowserType:String, Version:String): Boolean
~iint(: String H Mansge Browsers
- transpile(): File H -

+ Version: String

+ loaded(: Boolean

+ reload(): Boolean

